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Abstract
Over the last 20 years, researchers in the field of digital plant pathology have chased the goal to implement sensors, machine 
learning and new technologies into knowledge-based methods for plant phenotyping and plant protection. However, the 
application of swiftly developing technologies has posed many challenges. Greenhouse and field applications are complex 
and differ in their study design requirements. Selecting a sensor type (e.g., thermography or hyperspectral imaging), sensor 
platform (e.g., rovers, unmanned aerial vehicles, or satellites), and the problem-specific spatial and temporal scale adds to 
the challenge as all pathosystems are unique and differ in their interactions and symptoms, or lack thereof. Adding host–
pathogen–environment interactions across time and space increases the complexity even further. Large data sets are neces-
sary to enable a deeper understanding of these interactions. Therefore, modern machine learning methods are developed to 
realize the fast data analysis of such complex data sets. This reduces not only human effort but also enables an objective data 
perusal. Especially deep learning approaches show a high potential to identify probable cohesive parameters during plant-
pathogen-environment interactions. Unfortunately, the performance and reliability of developed methods are often doubted 
by the potential user. Gaining their trust is thus needed for real field applications. Linking biological causes to machine 
learning features and a clear communication, even for non-experts of such results, is a crucial task that will bridge the gap 
between theory and praxis of a newly developed application. Therefore, we suggest a global connection of experts and data 
as the basis for defining a common and goal-oriented research roadmap. Such high interconnectivity will likely increase the 
chances of swift, successful progress in research and practice. A coordination within international excellence clusters will 
be useful to reduce redundancy of research while supporting the creation and progress of complementary research. With 
this review, we would like to discuss past research, achievements, as well as recurring and new challenges. Having such a 
retrospect available, we will attempt to reveal future challenges and provide a possible direction elevating the next decade 
of research in digital plant pathology.
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Introduction

The changing attitude of society towards a more sustain-
able planet, which is nowadays termed as ‘neo-ecology’, is 
changing our common agriculture in a drastic way. Stock-
breeding, crop cultivation and plant protection are critically 
re-examined in the view of environmental and human pro-
tection strategies to meet the standards of the ‘agriculture 
green development’ (Davies and Shen 2020). Currently, 
agricultural land covers approximately five billion hectares, 
which is 38% of the available land on our planet (annual 
data FAO 2018). Agriculture must be updated in some 
aspects to meet rigorous environmental protection targets. 
However, a sustainable increase in productivity is inevitable 
because human population is growing continuously. Due to 
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the COVID-19 pandemic, the proportion of undernourished 
people even increased from 650 (~ 8.4%) up to 811 million 
(~ 9.9%) (annual data FAO 2021).

To guarantee sufficient food production, unnecessary pro-
duction loss in agriculture must be avoided. Globally, inte-
grated pest management (IPM) has reduced harvest losses 
of the five major food crops (i.e., wheat, rice, maize, potato, 
soybean) to 20–40% which are attributed to plant pathogens 
and pests (Savary et al. 2019). Unfortunately, most fields 
are too large for growers to cost-effectively monitor yield-
reducing causes, such as diseases, at regular time intervals. 
In addition, the detection and exact determination are com-
plex. The field of remote sensing offers methods for high 
temporal- and spatial-resolution monitoring, that can be used 
to efficiently deploy ground analysis and remediation action 
to diseased plants before financial losses incur and disease 
epidemics emerge. The application of remote sensing meth-
ods in plant pathology detection is based on the fact that 
plant pathogens and pests change the way light interacts with 
leaves and canopies.

Remote sensing, at its core, is the use of non-contact, 
often optical sensors such as RGB, multi- and hyperspec-
tral, thermal, chlorophyll fluorescence, and 3D-imaging, to 
obtain information about processes occurring in the natural 
and artificial landscape. Optical sensors offer the oppor-
tunity for non-destructive disease monitoring at different 
scales (Mahlein 2016). Next to common techniques for 
plant disease/pest monitoring, which range from molecu-
lar assays to smartphone applications, sensors optimize and 
reduce the human effort of disease detection in the field 
(Silva et al. 2021). Though, seemingly straightforward, dis-
ease detection, using remote sensing methods in the field, 
can be complex. Plant diseases themselves are complex as 
well. They often exhibit a heterogeneous distribution within 
crop stands and are highly dynamic in time and space due 
to dynamic interactions between living organisms within 
an ever-changing environment. Some of the most current 
challenges, research topics and achievements of digital plant 
pathology are summarized in Fig. 1, from a phytopathology 
perspective. It should highlight, that the main goal of digital 
plant pathology must be to manage farmer’s needs.

Therefore, we are aiming at providing a potential new 
direction for digital plant pathology research. We are taking 
a look at some milestones of digital plant pathology and 
explore the state-of-the-art imaging techniques and analysis 
methods. With this insight, we are creating a snapshot of the 
current technical state of applied digital plant pathology and 
ask the question if we already reached the goal of optimizing 
manual disease detection.

Digital plant pathology

Almost a century ago,   in 1927, Neblette showed that 
aerial photography (RGB) enables disease survey in agri-
cultural crops. In 1933, Bawden discovered in the lab that 
a black-and-white representation of an infrared photog-
raphy resulted in high contrasts between necrotic leaf 
spots caused by potato viruses. The infrared images were 
compared to panchromatic (i.e., black-and-white images 
sensitive to all wavelengths of visible light) images and 
no obvious contrast was visible. When the same was done 
with tobacco leaves, the opposite happened, and panchro-
matic images showed the greatest contrast compared to 
infrared filter images. The differences were explained by 
the different makeup of the necrotic areas. Necrotic cells 
in potato contained chemical break-down products while 
necrotic cells in tobacco were merely dead empty cells 
that differed in color compared to the rest of the leaf cells. 

Fig. 1  Achievements, challenges, and current research of digital plant 
pathology for adaption into the field practice. Challenges are to cap-
ture and explain the complexity resulting from the triangular rela-
tionship of sensor, pathogen, and environment. Implementing new 
methods is hindered by the lack of plant protection and the growing 
resistances. The analysis of big data is labor-intensive and needs 
sophisticated data-driven approaches, which can only be sufficiently 
interpreted by a multidisciplinary team. Currently, the development 
of agricultural robots, which can detect, assess and operate autono-
mously, is a research focus and, in the view of weeding, are very 
promising. Personal consulting is a driving force to introduce new 
technologies and digital possibilities into agriculture. Thereby, com-
puter/software approaches, as well as smart solutions enable fast and 
interconnected access to global data
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These findings set the stage for the use of different spectral 
bands to detect differences in plant health.

Technical development of optical sensors increased and 
Colwell (1956) remotely determined wheat rust and other 
diseases of grains by using military helicopters and infra-
red-filter cameras, as well as a spectrometer at oblique and 
nadir observation angles. Colwell suggested to test different 
combinations of spectral bands for disease detection. Based 
on the literature and his investigated photos and spectral 
reflectance curves, he proposed a new view on the interac-
tion of light with plants and the assessment and interpreta-
tion of crop photos for plant diseases. Colwell contributed 
an important theoretical framework that is still of utmost 
importance in digital plant pathology.

Since 2000, the idea of “foliar functional traits” has 
strongly emerged as a unifying concept in terrestrial remote 
sensing to better understand both natural variabilities in 
vegetation function and variability in response to stress 
(DuBois et al. 2018). Many traits shown to strongly corre-
late with natural and stress-induced variation in plant func-
tion (Wright et al. 2004) can be quantified and mapped with 
imaging spectroscopy (Townsend et al. 2003; Ustin et al. 
2004; Asner and Martin 2009; Ustin and Gamon 2010; Heim 
et al. 2015; Wang et al. 2020). Originating in terrestrial ecol-
ogy, the use of spectroscopy combined with chemistry and 
taxonomy has been coined as “spectranomics” (Asner and 
Martin 2009, 2016; Zhang et al. 2020). The foundational 
components of this approach are: (i) plants have chemical 
and structural fingerprints that become increasingly unique 
when additional constituents are incorporated (Ustin et al. 
2004) and (ii) spectroscopic signatures determine a portfolio 
of chemicals found in plants (Jacquemoud et al. 1995).

When applied to plant disease, spectranomics allows for 
accurate and non-destructive detection of direct and indirect 
changes to plant physiology, morphology, and biochemistry 
which induces the disease, both pre- and post-symptomat-
ically (Arens et al. 2016; Couture et al. 2018; Fallon et al. 
2020; Gold et al. 2020). Beneficial (Sousa et al. 2021) and 
parasitic (Zarco-Tejada et al. 2018) plant–microbe interac-
tions impact a variety of plant traits that can be remotely 
sensed. Changes to narrowband wavelengths, have proven 
valuable for plant disease sensing due to their sensitivity to 
a range of foliar properties (Curran 1989). The ultraviolet 
range (UV; 100–380 nm) is influenced by secondary plant 
metabolites, while the visible range (VIS; 400–700 nm) is 
influenced by primary metabolites such as pigments. Inter-
nal scattering processes and the structure of a leaf alter the 
near-infrared range (NIR; 700–1000 nm) while chemicals 
and water show alterations within the short-wave infrared 
(SWIR; 1000–2500 nm) (Carter and Knapp 2001). This 
means, that the nutrient content (Gillon et al. 1999; Zhai 
et al. 2013; Singh et al. 2015; Wang et al. 2016, 2020), 
water status (Gao 1996), photosynthetic capacity (Oren et al. 

1986), physiology (Serbin et al. 2019), phenolics (Kokaly 
and Skidmore 2015), secondary metabolites (Couture et al. 
2013, 2016) and leaf and cell structure (Mahlein et al. 2012; 
Leucker et al. 2016; Kuska et al. 2015, 2017), which are 
changed by diseases are displayed in changes of the spectral 
reflectance. The foundational spectranomics approach offers 
an explanation as to why sensing technologies are capable of 
disease detection in the first place. Remote imaging spectros-
copy assesses the sum impact of the fundamental biochemi-
cal, structural and physiological processes that underlie the 
diseased plant phenotype (Mahlein et al. 2012, Leucker et al. 
2016, Kuska et al. 2017, 2018a, 2018b, 2019, Zarco-Tejada 
et al. 2018, 2021; Asner et al. 2018; Sapes et al. 2021). Fur-
ther ranges of the electromagnetic spectrum can also provide 
interesting information, but often it is not possible to charac-
terize the determined changes to a specific cause (Mahlein 
2016; Simko et al. 2016). As an example, infrared (8–12 µm) 
light can be determined with thermal cameras, which return 
a “calibrated” temperature of the plant. The temperature of 
plants correlates very strongly with the transpiration rate. 
In addition to recording the water balance of the plant or 
the crop, this enables the detection of potential drought 
stress before it becomes visible. Although the sensitivity of 
thermography and chlorophyll fluorescence sensors is very 
high, both techniques lack of the possibility to differentiate 
between abiotic or biotic stress and with it of a causal con-
nection to a specific disease (Mahlein 2016; Simko et al. 
2016). However, a combination of sensors can indeed enable 
a specific characterization of plant diseases.

Within the last couple of years, Zarco-Tejada et  al. 
(2018) were able to use a combination radiative transfer 
and machine learning approach (Hernández-Clemente et al. 
2019) to pre-symptomatically detect Xylella fastidiosa infec-
tion in olive trees. This was achieved through a combination 
of hyperspectral NIR, thermal, and solar-induced fluores-
cence measurements. The authors found that spectral-plant 
trait alterations in response to X. fastidiosa infection in both 
spectral stress indicators and pigment degradation traits, 
particularly the chlorophyll degradation phaeophytinization-
based spectral trait (NPQI), were essential for distinguish-
ing asymptomatically infected plants from both symptomatic 
and healthy plants. Following up on this work, the authors 
found that NPQI was only indicative of asymptomatic X. fas-
tidiosa infection in irrigated almond groves. This eventually 
led to the discovery of the existence of divergent pathogen- 
and host-specific spectral pathways in response to abiotic 
and biotic stresses that yield a similar visual manifestation 
(Zarco-Tejada et al. 2021). Even though both drought and 
bacterial infection cause the plant to wilt, the mechanisms 
by which they do so are different, and this difference could 
be captured with spectroscopy. The authors then used the 
thermal crop water stress index (CWSI) to uncouple the 
confounding interaction to improve their misclassification 
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accuracy from 37% and 17% to 6.6% and 6.5%, respectively. 
By assessing spectral trait measurements that captured the 
underlying physiochemical origin of their diseased plant 
phenotype, the authors were able to develop a robust dis-
ease detection and differentiation methodology for mapping 
asymptomatic X. fastidiosa infection in multiple crops at 
scale. This success bolsters and lends hope to ongoing inves-
tigations that seek to detect diseases in real-world, multi-
stress environments (Fig. 1).

Disease management in the field: can 
spectral imaging provide the required 
digital information to control plant diseases 
and pests?

For disease management, weather-based consultation 
and forecasting systems (e.g., proPlant Expert.com; 
RANTISMA), enable the best plant protection measures by 
their warning services of appearing pests and diseases, since 
the early 1990s (Newe et al. 2003). The manual field check 
by the farmer is still necessary, but with digital consulting 
systems, time management and the process for a success-
ful plant protection measures is optimized (summarized in 
Damos 2015). However, many techniques and methods are 
still labor-intensive, and therefore, further progress is nec-
essary. Nilsson (1995) already concluded in his review that 
remote sensing offers a wider range of sensors and appli-
cation scales ranging from satellites to ground-based plat-
forms. Nevertheless, depending on the scale, pre-sympto-
matic and disease-specific detection, as well as the influence 
of the environment remained a major challenge (Mahlein 
et al. 2012). This is based on the fact, that plant–microbe 
interactions are subtle changes in biochemistry and struc-
ture. The interactions can be described in compatible (plant 
pathogenesis) and incompatible (plant resistance response) 
interactions. To differentiate pathogen attack symptoms, 
resistance reactions, abiotic stress and spectral signatures 
of healthy leaves, each of these states had to be characterized 
in detail (Carter and Knapp 2001). Multi- and hyperspectral 
imaging is the preferable technique to study such interac-
tions from the cell level to the canopy (Bohnenkamp et al. 
2019a, b, 2021).

Variances within and between spectral reflectance sig-
natures were already remotely determined with Landsat-2 
imagery. It was used to monitor an epidemic in Pakistan in 
the late 1970s, the first -ever use of space-borne sensing to 
monitor disease (Nagarajan et al. 1984). However, a better 
spatial resolution was needed to precisely explore infections 
in the field, especially to characterize a pathogen. As the 
equipment to provide higher resolution was still in an early 
development stage , spatial resolution, spectral resolution, 
and costs were closely related. For instance, the amount of 

generated film could not be stored at reasonable costs, was 
tedious to analyze as human raters had to screen the images, 
and no computers were available to perform pixel-wise cal-
culations. The overall progress of remote sensing for abiotic 
and biotic plant stress was summarized by Jackson (1986).

Two decades later, Chaerle et al. (2007) analyzed resist-
ant tobacco plants, and those susceptible to the tobacco 
mosaic virus; also, they looked at Cercospora beticola on 
sugar beet using thermal imaging and chlorophyll fluores-
cence. They enabled a pre-symptomatic detection and indi-
cated that their studied plant-pathogen interactions could 
be distinguished. Next, studies using hyperspectral imaging 
showed that it was possible to discriminate and character-
ize symptoms of sugar beet diseases, such as Heterodera 
schachtii, Rhizoctonia solani, Cercospora beticola, Uromy-
ces betae and Erysiphe betae (Hillnhütter and Mahlein 2008; 
Mahlein et al. 2010; Hillnhütter et al. 2012). Hyperspectral 
imaging (HSI)  further enabled the research community to 
get a deeper  understanding of plant-pathogen interactions. 
Leucker et al. (2016) were able to display different disease 
severities of sugar beet leaves inoculated with C. beticola 
caused by quantitative trait loci (QTL). The increase in 
phenolic compounds and structural discontinuities caused 
by tissue collapse, in response to fungal toxins, explain the 
substantial decrease in reflectance of QTL leaves. Using HSI 
in the SWIR-range, a variety of micro- and macronutrients 
such as nitrogen, magnesium, sodium, iron, or copper could 
also be identified in corn and soybeans undergoing water 
stress (Pandey et al. 2017). In addition, HSI can be extended 
to all parts of the plant. For example, Alisaac et al. (2019) 
showed that HSI of wheat spikelets infected by Fusarium 
head blight allows for the identification of mycotoxins which 
was confirmed by quantification of fungal DNA.

Importantly, HSI comes with numerous advantages 
compared to classical visual monitoring or other analytical 
methods. It can be applied at different scales—from the cel-
lular level for investigating plant tissue in combination with 
microscopes, over the individual plant scale in greenhouses 
or climate chambers, to the canopy scale in field applica-
tions with cameras mounted on unmanned aerial vehicles 
or airplanes (Bohnenkamp et al. 2019a, b, 2021; Heim et al. 
2019a). However, in all cases, the analysis of HSI data must 
be done with care as a great complexity results from a trian-
gular relationship between sensor, pathogen, and environ-
ment (Fig. 1). This relationship is further complicated by 
large amounts of often co-linear data (Thomas et al. 2018a). 
The effective analysis and interpretation of hyperspectral 
data are limiting factors for an implementation into plant 
phenotyping or precision agriculture Mahlein et al. (2018). 
Automated analysis pipelines and sophisticated data min-
ing and machine learning approaches are necessary to 
“uncover the spectral language of plants”, as it was shown 
by Wahabzada et al., (2016).
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Data handling and machine learning

Once imaging has been completed, a data analysis pipe-
lines must be developed and implemented to ensure 
retrieval of meaningful information. In Fig. 2, we are 
presenting a workflow diagram that proposes a potential 
new multidisciplinary workflow for digital plant pathol-
ogy research. Several requirements are prerequisites and 
different subsequent or parallel steps are necessary. After 
successfully measuring plant data, preprocessing needs to 
be performed. Steps like de-noising, smoothing, calibra-
tion, image segmentation, and outlier removing must be 
added to transfer the image data to features that can be 
used as input for machine learning routines (Paulus and 
Mahlein 2020, Behmann et al. 2015). Literature shows not 
only the importance of this step but also the huge effort 
that is required for different sensors in greenhouses and 
in the field (Bohnenkamp et al. 2021, 2019a, b; Thomas 
et al. 2018b). Hyperspectral measurements either use the 
raw reflectance signal as input or, for reduction of data 
complexity, vegetation indices like the NDVI or OSAVI 
(Bohnenkamp et al. 2019a, b; Rouse et al. 1974, Ron-
deaux 1996). Even though data complexity is reduced, 
vegetation indices retain their predictive power and can 
be used for phenotyping approaches with comparably low 
data input and subtle features. An example was shown for 
light leaf spot on oilseed rape plants (Veys et al. 2019). 

Multispectral approaches in the field can be used in similar 
ways but usually require a much higher effort for registra-
tion and data calibration due to the large area of interest 
and the fact that the environmental conditions are chang-
ing during capturing (Tmušić et al. 2020). For such cir-
cumstances, it is discussed how 3D imaging can provide 
necessary information for data calibration (Paulus 2020; 
Paulus et al. 2014).

Machine learning provides approaches to give meaning 
to the data. Supervised learning is used to train a classifier 
to separate different classes of infection or diseases (Rumpf 
et al. 2010). Therefore, a labeled dataset to train the model 
is essential. Commonly, the labeled dataset is split into three 
different subsets including a training set, a validation set, 
and a test set. The training set is used to generate a model, 
the validation set is used to validate it and to perform a fine 
tuning, and the final test set is then used to calculate various 
accuracy and error metrics. Comparable to conventional data 
analysis methods where rules are postulated to analyze the 
data, machine learning enables to learn these rules by the 
above-mentioned training process. Although data labelling 
might require intense manual work, these methods enjoy 
great popularity in plant science.

A type of machine learning algorithm, the neural net-
work, has been rediscovered during the last decade. Invented 
during the early 1940s (McCulloch and Pitts 1943), this 
machine learning approach became only popular later with 
the development of high computational power. Neural 

Fig. 2  The workflow for the interpretation of sensor data using 
machine learning and linking it to biological processes, using super-
vised learning and feature importance methods, is shown. Adding the 
biological knowledge to the interpretation of features would allow 
for a more mechanistic and transparent machine learning approach 

as is currently the case. Each step in the process is often performed 
by a single expert. Thus, detailed knowledge of methods—especially 
in machine learning—is often not available. An approach involving 
experts from multiple disciplines would improve current workflows
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networks use the captured images for segmentation, classi-
fication, or regression tasks (Barbedo 2021). It is to consider 
that the data, which is used to train these algorithms, must 
be of high quality and in a proper quantity to realize results 
with a high accuracy and low aberration.

A deeper insight into the importance of the input vari-
ables is also enabled by further supervised machine learn-
ing. Adapted algorithms like Boruta or Recursive Feature 
Elimination (Chen et al. 2020) provide an importance rat-
ing for the machine learning features. When used on hyper-
spectral plant disease data, these techniques can reveal 
spectral regions of important wavelength for identifying 
infected plants (Brugger et al. 2021). In contrast to super-
vised machine learning methods, unsupervised methods do 
not need any labeled data or data splitting. These clustering 
approaches like k-means or hierarchical clustering combine 
data of similar features and thus give semantic to the data 
by finding patterns of similarity (Wahabzada et al. 2015). 
However, results are hard to interpret and need then labelled 
data to be evaluated. Yet, these routines can be used to find 
groups of similarities, which have not been noticed before.

At this point, biological insight is needed to connect the 
output of the machine learning methods to plant- and infec-
tion processes (Fig. 2). Recently, approaches integrated 
expert knowledge as active learning processes in the analysis 
pipeline, this resulted in significantly improved quality and 
interpretability of machine learning outputs (Schramowski 
et  al. 2020). To exploit such sophisticated data-driven 
approaches for real applications by agricultural experts, 
the models must be biological interpretable, which are now 
known as “white-box machine learning algorithms” (Fig. 1). 
They earned this name by aiming at being more explainable 
and transparent for users interested in the underlying cause 
for algorithmic outputs. The opposite would be the previous 
type of algorithms known as “black-box algorithms”. Lat-
est developments show publicly available software libraries, 
such as the caret package (Kuhn 2008), Keras or Tensorflow 
(Géron 2019). Nevertheless, these models are only powerful 
through the underlying training data and rely on high-quality 
annotated data.

Digitalization in agricultural practice: are 
robots the better farmer?

Since the last turn of the millenium, researchers gained con-
fidence in deploying unmanned terrestrial and aerial vehicles 
(Fig. 1). These could be equipped with reflectance-based 
sensors for disease detection with enhanced spatial resolu-
tions allowing for better discrimination between biotic and 
abiotic stress. Some systems reached a work rate of 3 ha/h 
(West 2003). Still, variations in illumination intensity, sun/
sensor orientation, and/or background soil reflection were 

impairing consistent and high-quality data retrieval. Another 
problem turned out to be soil dust leading to detection errors 
and physical damage to the crops through the vehicle itself. 
Nowadays, automatization, mechatronics, sensors, electrical 
engineering and artificial intelligence have reached a level 
that enables a high degree of autonomy for mobile platforms 
such as drones, cars, and robots (see Fig. 1 “achievements”). 
In agriculture, autonomous robots, equipped with sophis-
ticated sensor systems, are the next digitalization step for 
precise fertilization, pesticide spot-spraying and automated 
mechanical weeding. Automated robotic applications might 
even offer an alternative for overcoming shortages of human 
workers, especially for labor-intensive tasks such as harvest-
ing vegetables or manual weeding (Lowenberg-Deboer et al. 
2020).

Furthermore, the implementation of automated systems 
re-designed agricultural production by considering spatial 
heterogeneities of plant pest distribution or input parameters 
such as nutrients, water, and agrochemicals (Saiz-Rubio and 
Rovira-Más 2020; Wegener et al. 2019). The development 
of robotic applications for crop management differs with 
respect to the crop type and cultivation system. One exam-
ple is the usage of UAVs in the field which are releasing 
Trichogramma brassicae, a natural enemy against Ostrinia 
nubilalis (European corn borer), as a biological control in 
corn plants (Zhan et al. 2021). In contrast to the manual 
application of “Trichogramma bags”, UAVs enable a fast 
and practical application in open land.

In the greenhouse, higher levels of automation, such 
as robotic harvesting of e.g., pepper (Arad et al. 2020) or 
robotic plant protection measures in tomatoes (Rincón et al. 
2020; Cantelli et al. 2019), are already implemented. Field 
crops bring a variation of challenges as they can be ran-
domly distributed (e.g., cereals) or planted in rows (e.g., 
corn, sugar beet, cauliflower). A more and more frequently 
used application is the selective removal of weed within 
and between crop rows (Bakker et al. 2010) using actuators 
such as mechanical weeding tools, laser, stampers or mill-
ing heads.

Prototypes of these weeding robots have raised public 
awareness during the COVID-19 pandemic when trained 
workers for manual weeding were not available (Mitari-
tonna and Ragot 2020). A fast development can be seen for 
weeding robots, in particular for row crops. These robots 
are commercially available and can be equipped to deal with 
different working concepts. The first concept depends on 
a highly accurate GPS positioning of the seed pill (Grie-
pentrog et al. 2006). Precise seeding with just a minimal 
error is the prerequisite for orientation and an automated 
weeding. The robots use the weeding tools on the complete 
field, except for the area around the planted seed. The second 
concept is independent of the seeding step. Using digital 
cameras and an adapted vision recognition system mostly 
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depending on neural networks and a huge underlying train-
ing dataset, the robot is able to detect the crop rows and to 
adapt its position, heading and navigation path. Furthermore, 
the weeding tools can be positioned in between or across 
rows (Machleb et al. 2020).

Position-based systems need a highly precise GPS signal 
mostly coupled to a real-time-kinematic approach (RTK) 
which needs to be booked at local suppliers. Without this 
system, a proper operation is not possible. The system is 
based on pre-learned positions of seeds and is not aware 
of changes within the plant population. It does not detect 
if seeds do not germinate, were eaten by animals or rolled 
to another position during the sewing process. The robot 
will continue weeding around these spots or uses its tools 
where it assumes weeds regardless of the actual presence of 
the seed or seedling. Nevertheless, position-based systems 
are robust and operate independent of pre-learned image 
datasets. They need the data of the sowing process, which 
is commonly performed by specialist machines, which can 
do this step at high speed for many rows at the same time.

Sensor-based systems can operate on different types of 
fields independent of the GPS position and the field struc-
ture. Camera images were analyzed in an adapted image 
processing pipeline. Here, the systems need to separate 
between vegetation and soil and in a second step between 
crop and weed. Therefore, a machine learning model based 
on a neural net approach is used which needs to be trained 
beforehand on datasets with the same crop under various 
environmental conditions (Bawden et al. 2017). The bigger 
this training dataset, the better the segmentation of vegeta-
tion and soil, or crop and weed, respectively (Baretto et al. 
2021). By extending this dataset, the robot can be adapted 
for usage on different crops.

While the position-based approach is hard to extend to 
further aspects but easy to adapt on different crops, the sen-
sor-based approach can be extended to aspects of the adapted 
treatment of different weed types. Furthermore, the genera-
tion of weed maps to distinguish different types of weeds, 
maps for plant properties like biomass, etc. can be extracted 
from the sensor-based algorithm which can in a later step 
be used for adapted control of bigger machines in the field. 
These maps are currently mainly performed by UAVs 
(Stroppiana et al. 2018). This concept could be a new basis 
for subtle disease detection in the field (Görlich et al. 2021). 
Robots have been shown to be able to adopt important tasks 
currently performed by trained workers or the farmer itself. 
Nevertheless, its deployment still is not fully autonomously 
productive and needs surveillance and a well-designed appli-
cation scenario where field requirements must be adapted to 
robots which makes an extensive use difficult (Albiero et al. 
2022). Currently, these robots show promising technology 
but evaluation studies to quantify the weed effect, the area 
efficiency, or limitations due to soil properties, climate and 

environmental factors are still not available. Future devel-
opment will show that parts of the daily farm work will be 
done by robots in a way that is different from concepts today. 
The research outlook and motivation will still be to develop 
an “All-In-One” farm robot, which combines all necessary 
tasks from seeding, field management, plant protection, and 
harvest (Fig. 1).

A similar outlook for farmers is given for spaceborne 
monitoring since the European Space Agency’s (ESA) 
Copernicus program launched their satellites SENTINEL-
2A in June 2015 and SENTINEL-2B in March 2017. Besides 
environmental monitoring and vegetation observation, they 
enable the monitoring of crop diseases and pests. The SEN-
TINEL satellite sensors have a sophisticated resolution of up 
to 10 m per pixel and a spectral range from 442–2200 nm 
with a resolution of 12 spectral bands. Free data access is 
possible using different commercial software as well as with 
no-charge browser solutions like the EO Browser by the ESA 
(https:// www. senti nel- hub. com). For some plant diseases 
and pests, the image time span is critical and short-term 
applications in the field cannot be conducted, which is cur-
rently the main drawback of the free satellite data available. 
This is because the image frequency depends on the revisit 
frequency of each single SENTINEL-2 satellite, which is 
10 days and in the combined constellation 5 days. In addi-
tion, cloud cover might block the field of interest during the 
imaging. Nevertheless, for retrospective field assessments, 
as well as research investigations and plant breeding pro-
cesses, spectral images from satellites are a real benefit to 
map landscapes with relevant crop and cultivation param-
eters, identify vulnerable spots, assess the vegetation period 
or conduct measures for future precision field management 
(Silva 2021, Segarra et al. 2020). Future satellite programs 
such as Landsat NeXt will likely unlock new applications 
and research directions (National Aeronautics and Space 
Administration, 2021).

One of these applications could be an extension of 
projects trying to improve the protection of water bodies 
from unwanted plant protection chemical run-off. Farm-
ers of Germany and Norway have already access to the 
 H2Ot-Spotmanager (http:// synops. julius- kuehn. de). It cal-
culates the environmental risk for waterbodies and their 
living organisms based on updated satellite, weather, and 
chemical data. Such applications show the manifold oppor-
tunities of satellite data even with a resolution that cannot 
represent a single plant. Plenty of commercial field manage-
ment programs which use satellite data are already avail-
able (e.g., Xarvio Field Manager, 365 FarmNet, FarmERP, 
Farmlogs, Agworld, AgriWebb). In these programs, farmers 
give access to their field data or their whole field index. 
These data are combined with weather and satellite data 
to give the farmer a complete overview and information 
(e.g., about plant nutrition, water status, plant health status, 

https://www.sentinel-hub.com
http://synops.julius-kuehn.de
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and necessary protection) around the growth of their crop. 
Robots and satellite applications entail a large potential for 
plant protection as these machines integrate optical sensors 
for monitoring, highly trained and efficient models for detec-
tion and they are able to carry different actuators for adapted 
applications in the field (Balafoutis et al. 2020). In combina-
tion with weather-based forecasting systems and informa-
tion platforms/databases (e.g., EPPO Global Database, ISIP, 
Animal and Plant Health Service (USDA)) machines could 
be trained soon to generate computer-based solutions and 
consulting before and during the vegetation season.

Outlook

As highlighted in this review, the achievements in digital 
plant pathology are great, but the potential is even greater. 
To exploit the full potential, the state-of-the-art must be reg-
ularly questioned while new challenges need to be defined 
and solved (Fig. 1). Because pathosystems can be very spe-
cific and complex, existing techniques must be critically 
evaluated and calibrated according to each pathosystems 
details. Generalized frameworks and models are necessary, 
which are intuitive and accessible for the farmer. To develop 
generalized models, a global database with spectral disease 
and plant spectra, could be a great foundation. An example 
of such a database from another field is the TRY plant trait 
database (www. try- db. org; Kattge et al. 2020). Challenges 
of such a collection of spectral data could involve having 
a standardized approach to clean and upload data (Paulus 
and Mahlein 2020). Access to the database must be simple, 
contributions should be acknowledged, data storage must be 
sustainable, and data curation for years or decades should be 
funded. Also, linking sensor type, ambient conditions and 
other necessary metadata to the uploaded dataset should be 
a requirement. Currently, many publications are presenting 
analysis pipelines on few, isolated databases (e.g., Plant Vil-
lage Data; https:// www. kaggle. com/ emmar ex/ plant disea se) 
that have no relation to the complex situation experience in 
the field. Often, algorithms are not new, and the biological 
interpretation is missing. This, however, should be the pre-
requisite for novel publications in the realm of digital plant 
pathology. Interlocking the complex aspects of phytopathol-
ogy, sensors, and machine learning is needed. A global data-
base could help to capture and disentangle this complexity.

Unfortunately, concepts using optical sensors for plant 
disease detection in the field are not yet established, or are 
still in its infancy, for them to be integrated into decision-
supporting solutions. While many calls exist for conducting 
interdisciplinary research to solve the remaining and persis-
tent challenges, guidance in the form of funding or academic 
positions for this type of research rarely exists (Heim et al. 
2019b; Bock et al. 2020; Brown et al. 2015). Therefore, we 

suggest the following research and action steps support the 
development and application of digital plant pathology in 
the field:

• Conferences for the development of an international 
spectral database (ISD) of the global main crops.

• Obligation to provide (image) data for publication and 
inclusion into the ISD.

• Investigation of the influence of abiotic factors on col-
lected data.

• A standardized framework for the collection of remote 
sensing data, including metadata on ambient and sensor 
conditions, and sufficient ground reference data.

• Investigation into scale independence of spectral infor-
mation.

• Enable machine communication (sensor, platform, com-
puter, analysis software) on a common software basis.

• Proof of concept for field applications based on ecologi-
cal and economic standards.

Digital plant pathology, as well as the whole digitaliza-
tion of agriculture, will change farmers' identity, skills, and 
work (Klerkx et al. 2019; Zolkin et al. 2021). To effectively 
implement digital technologies in practical agriculture, edu-
cated and trained farmers, as well as local consultants, with 
a commitment to new digital technologies, are required. 
Until this adaptation happens, these technologies will only 
become available to farmers via companies, start-ups, or the 
advisory services. Independent of the transfer from research 
to application, the common goal must be highly precise 
plant protection measures and higher performativity with-
out affecting the sustainability of the natural environment.
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